

Energy and Forces within a Train Consist

Brad Kerchof Advanced Rail Management Corp. Brad.Kerchof@gmail.com

Two Derailment Case Studies

Estimated Length: 10 minutes (19 slides)

Root Causes and Draft System Comparison

Estimated Length: 20 minutes (27 slides)

Jonathan Sunde Strato, Inc. jsunde@stratoinc.com

Two derailments illustrate the power of in-train forces

- 1) Train 18N, Altoona, PA, 2014
- 2) Train 22Q, Pell City, AL, 2018

Hydraulic End-Of-Car Cushion Units

An EOCC unit absorbs energy by compressing a hydraulic piston. Car type determines stroke and preload.

Equipped car types include multi-level, coil steel, auto parts box, and center beam & bulkhead flats (where impact could shift or damage lading)

	Auto	Other
Preload	50,000 lbs	100,000 lbs
Stroke	10"	15″

EOCC units on multi-levels, unloaded & compressed

Unloaded EOCCs 50" car separation

Fully-compressed EOCCs 30" car separation (each coupler compressed 10")

1) Train 18N descending the East Slope into Altoona, PA

Train 18N – 107 multi-levels (similar to train in photo) Descending grade 1.5% - 2%

Q: If the head-end of a train is traveling at 21 mph, what is the speed of the rear end?

Train 18N consist details

107 multi-levels equipped with EOCCs Length - 10,331 feet Weight - 7866 tons Slack - 10" per EOCC unit *Not including mechanical free slack Total EOCC slack - $107 \times 20'' = 178$ feet

Speed, lead locomotive, at bottom of grade

— NS 9912 Speed

Speed is displayed in full mph increments

MP 237 - bottom of 1.8% grade

Between MP 238 & 237, speed changes from 21 to 22 to 20 mph

Beyond MP 237, speed drops to 18 mph, increases gradually to 21 mph, then spikes suddenly to 26 mph

Add brake pipe pressure, lead locomotive

----- NS 9912 Speed ----- NS 9912 ABRK

MP 238-237: Brakes are applied; brake pipe is 80 lbs. (10-lb. reduction)

When head end gets to bottom of grade, the engineer releases his air brakes (brake pipe increases from 80 to 88-90 lbs.)

Brake release results in a gradual increase in head end speed

WRI 2

025

Brad.Kerchof@gmail.com 8 of 19

Add speed, helper locomotive

NS 9912 Speed
NS 9912 ABRK
NS 6304 Speed

Solid orange line is speed of the rear-end helper (event recorders are time-synced)

After brakes were released at the head end, rear end continues to slow

Why? Service brake pipe pressure changes travel at 600 fps; for a 2-mile train, that's 17 seconds!

When the rear end finally releases, speed increases to 28 mph

If the head end is traveling at 21 mph, what is....?

NS 9912 Speed

And quite the run-in it was!

Cause: Improper release of the air brakes on a descending grade allowing the stretched train to run in.

NS derailment file P-7185

The solution – delay the air brake release

----- NS 9912 Speed ----- NS 9912 ABRK

2) Train 22Q, Pell City, AL on an undulating grade

Consist details

3 locos on head end

70 cars - a combination of loaded double-stacks and loaded & empty multi-levels

8631 tons, 10,194 feet

NS derailment file P-7728

This analogy has been used for multi-levels & doublestacks

Q: Which is the more controllable arrangement: a slinky pulling the bowling ball, or the bowling ball pulling the slinky?

TOES simulation displayed in video format

Bar graph – coupler force, left margin (+ draft, - compression)

Blue line – vehicle speed, right margin

Engineer was in DB-4 at bottom of grade

Destined to derail

Description: When the rear doublestack block, weight 3347 tons, crested, it caused a run-in force of -315 kips compressing the slack in 41 EOCC-equipped multilevels and rupturing gage under the 39th-43rd head cars.

Cause: Train makeup

TOES modeling showed that no train handling that complied with the rules and generally acceptable train handling practices could have prevented a causative level run-in.

Train make-up: things to consider

- 1. EOCC-equipped cars number and placement
- 2. Tonnage trailing a block of EOCC-equipped cars
- 3. Grade
- 4. Use of air & dynamic brakes
- 5. Tonnage trailing empty cars
- 6. Distributed power placement & operation

