

Energy and Forces within a Train Consist

Two Derailment Case Studies

Estimated Length: 10 minutes (19 slides)

Root Causes and
Draft System Comparison

Estimated Length: 20 minutes (27 slides)
Jonathan Sunde
Strato, Inc.
jsunde@stratoinc.com

$\stackrel{\square}{\square}$

HEAVY HAUL SEMINAR • JUNE 8-9

Two derailments illustrate the power of in-train forces

1) Train 18 N, Altoona, PA, 2014
2) Train 22Q, Pell City, AL, 2018

HEAVY HAUL SEMINAR • JUNE 8-9
fIRIN: WRI 2023

Hydraulic End-Of-Car Cushion Units

An EOCC unit absorbs energy by compressing a hydraulic piston. Car type determines stroke and preload.

Equipped car types include multi-level, coil steel, auto parts box, and center beam \& bulkhead flats (where impact could shift or damage lading)

	Auto	Other
Preload	$50,000 \mathrm{lbs}$	100,000 lbs
Stroke	$10^{\prime \prime}$	$15^{\prime \prime}$

EOCC units on multi-levels, unloaded \& compressed

Unloaded EOCCs
50" car separation
Fully-compressed EOCCs
30" car separation (each coupler compressed 10")

1) Train 18 N descending the East Slope into Altoona, PA

Train 18N - 107 multi-levels (similar to train in photo)

Descending grade 1.5\%-2\%

Q: If the head-end of a train is traveling at 21 mph, what is the speed of the rear end?

Train 18N consist details

107 multi-levels equipped with EOCCs
Length - 10,331 feet
Weight - 7866 tons
Slack - 10" per EOCC unit
*Not including mechanical free slack
Total EOCC slack - $107 \times 20^{\prime \prime}=178$ feet

Speed, lead locomotive, at bottom of grade

Speed is displayed in full mph increments

MP 237 - bottom of 1.8\% grade

Between MP 238 \& 237, speed changes from 21 to 22 to 20 mph

Beyond MP 237, speed drops to 18 mph , increases gradually to 21 mph , then spikes suddenly to 26 mph

Graph: NS derailment report P-7185, 9-20-14

Add brake pipe pressure, lead locomotive

— NS 9912 Speed
...... NS 9912 ABRK

MP 238-237: Brakes are applied; brake pipe is 80 lbs . (10-lb. reduction)

When head end gets to bottom of grade, the engineer releases his air brakes (brake pipe increases from 80 to 88-90 lbs.)

Brake release results in a gradual increase in head end speed

Graph: NS derailment report P-7185, 9-20-14

Add speed, helper locomotive

- NS 9912 Speed
...... NS 9912 ABRK
- NS 6304 Speed

Solid orange line is speed of the rear-end helper (event recorders are time-synced)

After brakes were released at the head end, rear end continues to slow

Why? Service brake pipe pressure changes travel at 600 fps ; for a 2-mile train, that's 17 seconds!

When the rear end finally releases, speed increases to 28 mph

Graph: NS derailment report P-7185, 9-20-14

If the head end is traveling at 21 mph , what is.....?

- NS 9912 Speed
...... NS 9912 ABRK
— NS 6304 Speed

28 mph rear end 21 mph head end = 7 mph differential

Sudden increase in head-end speed indicates a run-in

Graph: NS derailment report P-7185, 9-20-14

WRI 2023

Chiki
Brad.Kerchof@gmail.com

And quite the run-in it was!

NS derailment file P-7185

The solution - delay the air brake release

_ NS 9912 Speed
.......NS 9912 ABRK

Delay release of air brakes until half the train is off the descending grade

For a two-mile long train, release brakes when the head end reaches MP 236

Graph: NS derailment report P-7185, 9-20-14

2) Train 22 Q, Pell City, AL on an undulating grade

Consist details

3 locos on head end
70 cars - a combination of loaded double-stacks and loaded \& empty multi-levels

8631 tons, 10,194 feet

Train 22Q Tonnage Profile

17 doublestacks (55 platforms) 2527 tons

41 multi-levels
2357 tons
68 ft EOCC

12 doublestacks (46 platforms) 3347 tons

NS derailment report
P-7728, 8-27-18
11H:

This analogy has been used for multi-levels \& doublestacks

Train 22Q Tonnage Profile

Tonnage \& Grade Profile scaled by Length

17 doublestacks
(55 platforms)
2527 tons

芷 41 multi-levels
2357 tons
68 ft EOCC slack

12 doublestacks (46 platforms)
3347 tons

Destined to derail

Description: When the rear doublestack block, weight 3347 tons, crested, it caused a run-in force of -315 kips compressing the slack in 41 EOCC-equipped multilevels and rupturing gage under the $39^{\text {th }}$ $43^{\text {rd }}$ head cars.

Cause: Train makeup

TOES modeling showed that no train handling that complied with the rules and generally acceptable train handling practices could have prevented a causative level run-in.

Train make-up: things to consider

1. EOCC-equipped cars - number and placement
2. Tonnage trailing a block of EOCC-equipped cars
3. Grade
4. Use of air \& dynamic brakes
5. Tonnage trailing empty cars
6. Distributed power placement \& operation
